WikiSort.ru - Космос

ПОИСК ПО САЙТУ | о проекте

Зеркально-линзовые оптические системы, или катадиоптрические системы, — это разновидность оптических систем, содержащих в качестве оптических элементов как сферические зеркала (катоптрику), так и линзы. Зеркально-линзовые системы нашли применение в прожекторах, фарах, ранних маяках, микроскопах и телескопах, а также в телеобъективах и сверхсветосильных объективах.

Основное развитие катадиоптрические системы получили в телескопах, поскольку позволяют использовать сферическую поверхность зеркал, значительно более технологичную, чем другие кривые поверхности. Это даёт возможность создавать сравнительно дешёвые телескопы больших диаметров. Коррекционные линзы сравнительно небольшого диаметра могут использоваться в телескопах-рефлекторах для увеличения полезного поля зрения, но к зеркально-линзовым телескопам их не относят. Зеркально-линзовыми принято называть такие телескопы, в которых линзовые элементы сравнимы по размеру с главным зеркалом и предназначены для коррекции изображения (оно строится главным зеркалом).

Основные оптические системы катадиоптрических телескопов

Согласно законам оптики, шероховатость поверхности зеркала должна быть не хуже λ/8, где λ — длина волны (видимый свет — 550 нм), а отклонение формы поверхности от расчётной должно лежать в пределах от 0,02 мкм до 1 мкм[1]. Таким образом, основная сложность изготовления зеркала состоит в необходимости очень точно соблюдать кривизну поверхности. Изготовить сферическое зеркало технологически гораздо проще, чем параболическое и гиперболическое, которые используются в телескопах-рефлекторах. Но сферическое зеркало само по себе обладает очень большими сферическими аберрациями и непригодно для использования. Описанные ниже системы телескопов — это попытки исправить аберрации сферического зеркала добавлением в оптическую систему стеклянной линзы особой кривизны (корректора).

Первые системы катадиоптрических телескопов

К первым типам катадиоптрических телескопов можно отнести системы, состоящие из однолинзового объектива и зеркала Манжена. Первый телескоп такого типа был запатентован W. F. Hamilton в 1814. В конце 19 века немецкий оптик Людвиг Шупманн (Ludwig Schupmann) расположил катадиоптрическое зеркало за фокусом линзового объектива и добавил в систему третий элемент — линзовый корректор. Данные телескопы, однако, не получили распространения, будучи оттеснены ахроматическими рефракторами и рефлекторами. Любопытно отметить, что в конце 20 века некоторые оптики снова проявили интерес к данным схемам: так, в 1999 г. британский любитель астрономии и телескопостроения Джон Уолл запатентовал оптическую схему телескопа «Zerochromat».[2]

Система Шмидта

Принцип действия системы, позже Шмидт установил на место ограничивающей диафрагмы корректор сферической аберрации
Оптическая схема телескопа Шмидта — Кассегрена

В 1930 году эстонско-шведский оптик, сотрудник Гамбургской обсерватории Бернхард Шмидт установил в центре кривизны сферического зеркала диафрагму, сразу устранив и кому и астигматизм. Для устранения сферической аберрации он разместил в диафрагме линзу специальной формы, которая представляет собой поверхность 4-го порядка. В результате получилась фотографическая камера с единственной аберрацией — кривизной поля и удивительными качествами: чем больше светосила камеры, тем лучше изображения, которые она даёт, и больше поле зрения.

Телескоп Шмидта — Кассегрена

В 1946 году Джеймс Бэкер установил в камере Шмидта выпуклое вторичное зеркало и получил плоское поле. Несколько позже эта система была видоизменена и стала одной из самых совершенных систем: Шмидта — Кассегрена, которая на поле диаметром 2 градуса даёт дифракционное качество изображения. В качестве вторичного зеркала обычно используется алюминированная центральная часть обратной стороны корректора.

Телескоп Шмидта очень активно используется в астрометрии для создания обзоров неба. Основное его преимущество — очень большое поле зрения, до 6°. Фокальная поверхность является сферой, поэтому астрометристы обычно не исправляют кривизну поля, а вместо этого используют выгнутые фотопластинки.

Система Максутова

Оптическая схема телескопа Максутова — Кассегрена

В 1941 году Д. Д. Максутов нашёл, что сферическую аберрацию сферического зеркала можно компенсировать мениском большой кривизны. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу — так называемую линзу Пиацци-Смита.

Проалюминировав центральную часть мениска, Максутов получил менисковые аналоги телескопов Кассегрена и Грегори. Были предложены менисковые аналоги практически всех интересных для астрономов телескопов. В частности, в современной любительской астрономии часто применяются телескопы Максутова — Кассегрена, и, в меньшей степени, Максутова — Ньютона и Максутова — Грегори.

Телескоп Максутова — Кассегрена диаметром 150 мм

Следует отметить, что существует два основных типа телескопов Максутова — Кассегрена, различие между которыми состоит в типе вторичного зеркала. В одном случае вторичное зеркало, как было указано выше, является алюминированным кружком на внутренней поверхности мениска. Это упрощает и удешевляет конструкцию. Однако, так как радиусы кривизны внешней и внутренней поверхности мениска одинаковы, для устранения сферической аберрации до приемлемых величин приходится увеличивать фокальное отношение системы. Поэтому абсолютное большинство коммерчески выпускающихся небольших телескопов любительского класса являются длиннофокусными и имеют фокальное отношение порядка 1/12—1/15.

Телескопы этого типа в англоязычных источниках обозначаются как Gregory–Maksutov или Spot–Maksutov, поскольку патент на такую схему (и тип вторичного зеркала) был выдан американскому оптику и инженеру Джону Грегори (John F. Gregory, 1927—2009). Первым коммерческим любительским телескопом такого типа был Questar, выпущенный в 1954 г.

Для создания более светосильных систем и телескопов высокого класса применяют отдельное вторичное зеркало, крепящееся к мениску. Наличие отдельного зеркала позволяет придать ему необходимую геометрическую форму, не изменяя при этом конструкцию мениска. В англоязычных источниках данный вариант телескопа Максутова обозначается как Maksutov–Sigler или Maksutov–Rutten.

Зеркально-линзовые телеобъективы

Зеркально-линзовый телеобъектив «Phoenix» 500 mm f/8
Изображение бликов на воде, даваемое зеркально-линзовым телеобъективом в расфокусе

Катадиоптрическая система нашла применение также при проектировании фотографических и киносъёмочных телеобъективов. Благодаря зеркально-линзовой конструкции существенно уменьшается длина оправы, поэтому объективы с фокусным расстоянием 1000 мм и более значительно компактнее и легче обычных длиннофокусных объективов[3]. В отдельных случаях уменьшение количества линз позволяет снизить хроматические аберрации.

Зеркально-линзовые объективы, как правило, не оснащаются регулируемой диафрагмой, и их фиксированное относительное отверстие лежит в диапазоне от f/5,6 до f/11. Поэтому снимать ими можно только при хорошем освещении или на фотоматериалы с высокой светочувствительностью. Некоторые специальные зеркально-линзовые объективы могут иметь и очень высокую светосилу (меньше 1).

Характерной особенностью изображений, создаваемых зеркально-линзовым объективом, является форма кружка рассеяния от ярких источников света, отображаемых не в фокусе. Такие источники изображаются в виде колец, соответствующих форме входного зрачка объектива. В некоторых случаях такой вид размытия создаёт своеобразный выразительный оптический рисунок.

Частотно-контрастная характеристика зеркально-линзовых объективов достаточно низка. Такой тип объективов приобрёл некоторую популярность в начале 1970-х годов из-за относительной компактности и дешевизны. Однако, низкая светосила и мягкий оптический рисунок заставили уступить место телеобъективам двухкомпонентных линзовых конструкций.

В отечественных фотокинообъективах использовалась, главным образом, система Максутова[4]. Примером могут послужить объективы серии «МТО» и «ЗМ».

Основные преимущества и недостатки катадиоптрических систем

Катадиоптрические системы — это синтез зеркальных и линзовых систем. Они имеют много преимуществ, но также получили в наследство и некоторые недостатки.

Преимущества
  • Главным преимуществом является простота изготовления сферического зеркала. Корректор избавляет систему от сферической аберрации, «трансформируя» её в аберрацию кривизны поля.
  • В качестве вторичного зеркала часто (хотя и не всегда) используется алюминированная центральная часть обратной стороны корректора. Вторичное зеркало — алюминированная часть корректора или отдельное — жёстко зафиксировано в оправе, в то время, как почти во всех рефлекторах вторичное зеркало держится на трёх-четырёх растяжках, что может приводить к разъюстировке и портит дифракционную картину. Катадиоптрическая система во многом свободна от этих недостатков.
  • Труба телескопа закрыта, что предотвращает загрязнение внутренних оптических элементов и снижает образование воздушных потоков внутри телескопа.
  • Трубы телескопов этого типа наиболее компактны по сравнению с другими типами телескопов (при равном диаметре и фокусном расстоянии).
Недостатки
  • Сложность изготовления корректора больших размеров. Диаметр самых больших инструментов не превышает 2 метров.
  • Большой фокус.
  • Система содержит оптические элементы из стекла, поэтому на окраине поля зрения проявляется хроматическая аберрация и кома. Стекло корректора поглощает часть света, несколько уменьшая светопропускание инструмента.
  • Проблема кривизны поля решалась использованием специального держателя, в котором плоская фотопластинка изгибалась до нужной кривизны. Изготовить же ПЗС-матрицу нужной кривизны сложно и дорого.
  • Фокус жёстко связан с длиной трубы (расстояния от зеркала до корректора — половина фокуса). Относительное отверстие также ограничено остаточными аберрациями.
  • Большое время термостабилизации оптики перед началом наблюдений.

Зеркально-линзовые системы создавались в поисках компромисса. Их применение ограничено. Малые размеры и фокус не позволяют применять их для астрофизических целей, но телескопы получили широкое распространение среди астрометристов.

См. также

Примечания

  1. Быков Б. З., Перов В. А. Оформление рабочих чертежей оптических деталей и выбор допусков на их характеристики. — 1-е изд. М.: МГТУ им. Н. Э. Баумана, 2009.
  2. «Zerochromat» Джона Уолла.
  3. Общий курс фотографии, 1987, с. 15.
  4. Кудряшов, 1952, с. 56.

Литература

  • Фомин А. В. § 5. Фотографические объективы // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 12—25. — 256 с. 50 000 экз.
  • Н. Кудряшов. Узкоплёночный киноаппарат // «Как самому снять и показать кинофильм». — 1-е изд. — М.,: Госкиноиздат, 1952. — С. 56—57. — 252 с.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии