Преде́л Лапла́са — максимальное значение эксцентриситета, при котором решение уравнения Кеплера, выраженное в виде ряда по эксцентриситету, сходится. Названо в честь французского математика Пьера-Симона Лапласа. Приблизительное значение предела Лапласа:
Уравнение Кеплера связывает между собой среднюю аномалию M с эксцентрической аномалией E для тела, движущегося по эллипсу с эксцентриситетом ε. Это уравнение не может быть решено для E через элементарные функции, но теорема Лагранжа об обращении рядов даёт решение в виде степенного ряда от ε:
Радиус сходимости этого степенного ряда (такое число, что при меньших значениях ряд сходится, а при больших — расходится) при значениях константы M, не являющихся целочисленными кратными π, не зависит от выбора M и называется числом (пределом) Лапласа.
Предел Лапласа является решением уравнения
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .