Комплексная наука | |
Астрономия | |
---|---|
англ. Astronomy | |
| |
Тема | Естествознание |
Предмет изучения | Вселенная |
Период зарождения | XVIII век |
Основные направления | небесная механика, астрофизика, космология, планетология и др. |
Астроно́мия (от др.-греч. ἄστρον «звезда» и νόμος «закон») — наука о Вселенной, изучающая расположение, движение, структуру, происхождение и развитие небесных тел и систем[1].
В частности, астрономия изучает Солнце и другие звёзды, планеты Солнечной системы и их спутники, экзопланеты, астероиды, кометы, метеороиды, межпланетное вещество, межзвёздное вещество, пульсары, чёрные дыры, туманности, галактики и их скопления, квазары и многое другое[1].
Относится к естественным наукам[2].
Астрономия — одна из древнейших наук. Доисторические культуры и древнейшие цивилизации оставили после себя многочисленные астрономические артефакты, свидетельствующие о знании ими закономерностей движения небесных тел. В качестве примеров можно привести додинастические древнеегипетские монументы и Стоунхендж. Первые цивилизации вавилонян, греков, китайцев[en], индийцев, майя и инков уже проводили методические наблюдения ночного небосвода. Но только изобретение телескопа позволило астрономии развиться в современную науку. Исторически астрономия включала в себя астрометрию, навигацию по звёздам, наблюдательную астрономию, создание календарей и даже астрологию. В наши дни профессиональная астрономия часто рассматривается как синоним астрофизики.
В XX веке астрономия разделилась на две главные ветви: наблюдательную и теоретическую[en]. Наблюдательная астрономия — получение наблюдательных данных о небесных телах, которые затем анализируются. Теоретическая астрономия ориентирована на разработку компьютерных, математических или аналитических моделей для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия даёт материал для теоретических выводов и гипотез и возможность их проверки.
2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности астрономией и её понимания. Это одна из немногих наук, где непрофессионалы всё ещё могут играть активную роль. Любительская астрономия привнесла свой вклад в ряд важных астрономических открытий.
Из всех естественных наук астрономия более других подвергалась нападкам папской курии. Лишь в 1822 году инквизиция формально объявила — в противоречии с прежними воззрениями католической церкви, — что в Риме дозволено печатание книг, в которых изложены суждения о движении Земли и неподвижности Солнца, после чего при издании Индекса запрещённых книг 1835 года из него были исключены имена Коперника, Кеплера и Галилея[3].
Термин «астроно́мия» (др.-греч. ἀστρονομία) образован от древнегреческих слов ἀστήρ, ἄστρον (астер, астрон), «звезда» и νόμος (номос), «обычай, установление, закон»[1].
Современная астрономия делится на ряд разделов, которые тесно связаны между собой, поэтому разделение астрономии в некоторой мере условно. Главнейшими разделами астрономии являются:
Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.
Ряд разделов астрофизики выделяется по специфическим методам исследования.
В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).
На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).
Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.
Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.
Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрономы изучают звёзды с помощью и наблюдений, и теоретических моделей, а сейчас и с помощью компьютерного численного моделирования.
Формирование звёзд происходит в газопылевых туманностях. Достаточно плотные участки туманностей могут сжиматься силой гравитации, разогреваясь за счёт высвобождаемой при этом потенциальной энергии. Когда температура становится достаточно большой, в ядре протозвезды начинаются термоядерные реакции и она становится звездой[4]:264.
Почти все элементы, более тяжелые чем водород и гелий, образуются в звёздах.
Основными задачами астрономии являются[1]:
Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.
Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.
Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.
Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.
С тех пор как на Земле существуют люди, их всегда интересовало то, что они видели на небе. Ещё в глубокой древности они заметили взаимосвязь движения небесных светил по небосводу и периодических изменений погоды. Астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.
Астрономия — одна из старейших наук, возникшая из практических потребностей человечества. По расположению звёзд и созвездий первобытные земледельцы определяли наступления времён года. Кочевые племена ориентировались по Солнцу и звездам. Необходимость в летоисчислении привела к созданию календаря. Есть доказательства, что ещё доисторические люди знали об основных явлениях, связанных с восходом и заходом Солнца, Луны и некоторых звезд. Периодическая повторяемость затмений Солнца и Луны была известна уже очень давно. Среди древнейших письменных источников встречаются описания астрономических явлений, а также примитивные расчетные схемы для предсказания времени восхода и захода ярких небесных тел и методы отсчета времени и ведения календаря. Астрономия успешно развивалась в Древнем Вавилоне, Египте, Китае и Индии. В китайской летописи описывается затмение Солнца, которое состоялось в 3-м тысячелетии до н. э. Теории, которые на основе развитых арифметики и геометрии объясняли и предсказывали движение Солнца, Луны и ярких планет, были созданы в странах Средиземноморья в последние века дохристианской эры и вместе с простыми, но эффективными приборами, служили практическим целям вплоть до эпохи Возрождения.
Особенно большого развития достигла астрономия в Древней Греции. Пифагор впервые пришел к выводу, что Земля имеет шарообразную форму, а Аристарх Самосский высказал предположение, что Земля вращается вокруг Солнца. Гиппарх во II в. до н. э. составил один из первых звездных каталогов. В произведении Птолемея «Альмагест», написанном во II в. н. э., изложена геоцентрическая система мира, которая была общепринятой на протяжении почти полутора тысяч лет. В средневековье астрономия достигла значительного развития в странах Востока. В XV в. Улугбек построил вблизи Самарканда обсерваторию с точными в то время инструментами. Здесь был составлен первый после Гиппарха каталог звёзд. С XVI в. начинается развитие астрономии в Европе. Новые требования выдвигались в связи с развитием торговли и мореплавания и зарождением промышленности, способствовали освобождению науки от влияния религии и привели к ряду крупных открытий.
Рождение современной астрономии связывают с отказом от геоцентрической системы мира Птолемея (II век) и заменой её гелиоцентрической системой Николая Коперника (середина XVI века), с началом исследований небесных тел с помощью телескопа (Галилей, начало XVII века) и открытием закона всемирного притяжения (Исаак Ньютон, конец XVII века). XVIII—XIX века были для астрономии периодом накопления сведений и знаний о Солнечной системе, нашей Галактике и физической природе звёзд, Солнца, планет и других космических тел. Появление крупных телескопов и осуществления систематических наблюдений привели к открытию, что Солнце входит в состав огромной дискообразной системы, состоящей из многих миллиардов звезд — галактики. В начале XX века астрономы обнаружили, что эта система является одной из миллионов подобных ей галактик. Открытие других галактик стало толчком для развития внегалактической астрономии. Исследование спектров галактик позволило Эдвину Хабблу в 1929 году выявить явление «разбегания галактик», которое впоследствии получило объяснения на основе общего расширения Вселенной.
В XX веке астрономия разделилась на две основные ветви: наблюдательную и теоретическую. Наблюдательная астрономия — это получение наблюдательных данных о небесных телах, которые затем анализируются. Теоретическая астрономия ориентирована на разработку моделей (аналитических или компьютерных) для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия даёт материал для теоретических выводов и гипотез и возможность их проверки.
Научно-техническая революция XX века имела чрезвычайно большое влияние на развитие астрономии в целом и особенно астрофизики. Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спутников Земли для внеатмосферных астрономических наблюдений привели к открытию новых видов космических тел: радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и т. д.. Были разработаны основы теории эволюции звезд и космогонии Солнечной системы. Достижением астрофизики XX века стала релятивистская космология — теория эволюции Вселенной в целом.
Бо́льшая часть астрономических наблюдений — это регистрация и анализ видимого света и другого электромагнитного излучения[5]. Астрономические наблюдения могут быть разделены в соответствии с областью электромагнитного спектра, в которой проводятся измерения. Некоторые части спектра можно наблюдать с Земли (то есть её поверхности), а другие наблюдения ведутся только на больших высотах или в космосе (в космических аппаратах на орбите Земли). Подробные сведения об этих группах исследований приведены ниже.
Оптическая астрономия (которую ещё называют астрономией видимого света) — древнейшая форма исследования космоса[6]. Сначала наблюдения зарисовывали от руки. В конце XIX века и большей части XX века исследования осуществлялись по фотографиям. Сейчас изображения получают цифровыми детекторами, в частности детекторами на основе приборов с зарядовой связью (ПЗС). Хотя видимый свет охватывает диапазон примерно от 4000 Ǻ до 7000 Ǻ (400—700 нанометров)[6], оборудование, применяемое в этом диапазоне, позволяет исследовать ближний ультрафиолетовый и инфракрасный диапазон.
Инфракрасная астрономия касается регистрации и анализа инфракрасного излучения небесных тел. Хотя длина его волны близка к длине волны видимого света, инфракрасное излучение сильно поглощается атмосферой, кроме того, в этом диапазоне сильно излучает атмосфера Земли. Поэтому обсерватории для изучения инфракрасного излучения должны быть расположены на высоких и сухих местах или в космосе. Инфракрасный спектр полезен для изучения объектов, которые слишком холодны, чтобы излучать видимый свет (например, планеты и газопылевые диски вокруг звёзд). Инфракрасные лучи могут проходить через облака пыли, поглощающие видимый свет, что позволяет наблюдать молодые звезды в молекулярных облаках и ядрах галактик[7]. Некоторые молекулы мощно излучают в инфракрасном диапазоне, и это даёт возможность изучать химический состав астрономических объектов (например, находить воду в кометах)[8].
Ультрафиолетовая астрономия имеет дело с длинами волн примерно от 100 до 3200 Ǻ (10—320 нанометров)[9]. Свет на этих длинах волн поглощается атмосферой Земли, поэтому исследование этого диапазона выполняют из верхних слоев атмосферы или из космоса. Ультрафиолетовая астрономия лучше подходит для изучения горячих звёзд (классов O и B), поскольку основная часть излучения приходится именно на этот диапазон. Сюда относятся исследования голубых звезд в других галактиках и планетарных туманностей, остатков сверхновых, активных галактических ядер. Однако ультрафиолетовое излучение легко поглощается межзвёздной пылью, поэтому в результаты измерений следует вносить поправку на неё.
Радиоастрономия — это исследование излучения с длиной волны, большей чем один миллиметр (примерно)[9]. Радиоастрономия отличается от большинства других видов астрономических наблюдений тем, что исследуемые радиоволны можно рассматривать именно как волны, а не как отдельные фотоны. Итак, можно измерить как амплитуду, так и фазу радиоволны, а для коротких волн это не так легко сделать[9].
Хотя некоторые радиоволны излучаются астрономическими объектами в виде теплового излучения, большинство радиоизлучения, наблюдаемого с Земли, является по происхождению синхротронным излучением, которое возникает, когда электроны движутся в магнитном поле[9]. Кроме того, некоторые спектральные линии образуются межзвездным газом, в частности спектральная линия нейтрального водорода длиной 21 см[9].
В радиодиапазоне наблюдается широкое разнообразие космических объектов, в частности сверхновые звезды, межзвездный газ, пульсары и активные ядра галактик[9].
Рентгеновская астрономия изучает астрономические объекты в рентгеновском диапазоне. Обычно объекты излучают рентгеновское излучение благодаря:
Поскольку рентгеновское излучение поглощается атмосферой Земли, рентгеновские наблюдения в основном выполняют из орбитальных станций, ракет или космических кораблей. К известным рентгеновским источникам в космосе относятся: рентгеновские двойные звезды, пульсары, остатки сверхновых, эллиптические галактики, скопления галактик, а также активные ядра галактик[9].
Гамма-астрономия — это исследование самого коротковолнового излучения астрономических объектов. Гамма-лучи могут наблюдаться непосредственно (такими спутниками, как Телескоп Комптон) или опосредованно (специализированными телескопами, которые называются атмосферные телескопы Черенкова). Эти телескопы фиксируют вспышки видимого света, образующиеся при поглощении гамма-лучей атмосферой Земли вследствие различных физических процессов вроде эффекта Комптона, а также черенковское излучение[10].
Большинство источников гамма-излучения — это гамма-всплески, которые излучают гамма-лучи всего от нескольких миллисекунд до тысячи секунд. Только 10 % источников гамма-излучения активны долгое время. Это, в частности, пульсары, нейтронные звезды и кандидаты в чёрные дыры в активных галактических ядрах[9].
С Земли наблюдается не только электромагнитное излучение, но и другие типы излучения.
В нейтринной астрономии для выявления нейтрино используют специальные подземные объекты, такие как SAGE, GALLEX и Камиока II / III[9]. Эти нейтрино приходят главным образом от Солнца, но также от сверхновых звёзд. Кроме того, современные обсерватории могут регистрировать космические лучи, поскольку это частицы очень высокой энергии, дающие при входе в атмосферу Земли каскады вторичных частиц[11]. Кроме того, некоторые будущие детекторы нейтрино будут также непосредственно чувствительны к частицам, рожденным, когда космические лучи попадают в атмосферу Земли[9].
Новым направлением в разновидности методов астрономии может стать гравитационно-волновая астрономия, которая стремится использовать детекторы гравитационных волн для наблюдения компактных объектов. Несколько обсерваторий уже построено, например, лазерный интерферометр гравитационной обсерватории LIGO, но гравитационные волны очень трудно обнаружить, и они до сих пор остаются неуловимыми[12].
Планетарная астрономия занимается не только наземными наблюдениями небесных тел, но и их непосредственным изучением с помощью космических аппаратов, в том числе доставивших на Землю образцы вещества. Кроме того, многие аппараты собирают различную информацию на орбите или на поверхности небесных тел, а некоторые и проводят там различные эксперименты.
Астрометрия — один из старейших подразделов астрономии. Она занимается измерениями положения небесных объектов. Точные данные о расположении Солнца, Луны, планет и звезд когда-то играли чрезвычайно важную роль в навигации. Тщательные измерения положения планет привели к глубокому пониманию гравитационных возмущений, что позволило с высокой точностью рассчитывать их прошлое расположение и предсказывать будущее. Эта отрасль известна как небесная механика. Сейчас отслеживание околоземных объектов позволяет прогнозирования сближения с ними, а также возможные столкновения различных объектов с Землёй[13].
Измерения параллаксов ближайших звёзд — фундамент для определения расстояний в дальнем космосе и измерения масштабов Вселенной. Эти измерения обеспечили основу для определения свойств отдаленных звезд; свойства могут быть сопоставлены с соседними звёздами. Измерения лучевых скоростей и собственных движений небесных тел позволяет исследовать кинематику этих систем в нашей галактике. Астрометрические результаты могут использоваться для измерения распределения темной материи в галактике[14].
В 1990-х годах астрометрические методы измерения звездных колебаний были применены для обнаружения крупных внесолнечных планет (планет на орбитах соседних звёзд)[15].
Исследования с помощью космической техники занимают особое место среди методов изучения небесных тел и космической среды. Начало было положено запуском в СССР в 1957 году первого в мире искусственного спутника Земли. Космические аппараты позволили проводить исследования во всех диапазонах длин волн электромагнитного излучения. Поэтому современную астрономию часто называют всеволновой. Внеатмосферные наблюдения позволяют принимать в космосе излучения, которые поглощает или очень меняет земная атмосфера: радиоизлучения некоторых длин волн, не доходят до Земли, а также корпускулярные излучения Солнца и других тел. Исследование этих, ранее недоступных видов излучения звезд и туманностей, межпланетной и межзвездной среды очень обогатило наши знания о физических процессах Вселенной. В частности, были открыты неизвестные ранее источники рентгеновского излучения — рентгеновские пульсары. Много информации о природе отдаленных от нас тел и их систем также получено благодаря исследованиям, выполненным с помощью спектрографов, установленных на различных космических аппаратах.
Многоканальная астрономия использует одновременный приём электромагнитного излучения, гравитационных волн и элементарных частиц, испускаемых одним и тем же космическим объектом или явлением, для его изучения.
Астрономы-теоретики используют широкий спектр инструментов, которые включают аналитические модели (например, политропы для приближенного поведения звезд) и численное моделирование. Каждый из методов имеет свои преимущества. Аналитическая модель процесса, как правило, лучше дает понять суть того, почему это (что-то) происходит. Численные модели могут свидетельствовать о наличии явлений и эффектов, которых, вероятно, иначе не было бы видно[16][17].
Теоретики в области астрономии стремятся создавать теоретические модели и выяснить в исследованиях последствия этих моделирований. Это позволяет наблюдателям искать данные, которые могут опровергнуть модель или помогает в выборе между несколькими альтернативными или противоречивыми моделями. Теоретики также экспериментируют в создании или видоизменении модели с учетом новых данных. В случае несоответствия общая тенденция состоит в попытке достигнуть коррекции результата минимальными изменениями модели. В некоторых случаях большое количество противоречивых данных со временем может привести к полному отказу от модели.
Темы, которые изучают теоретические астрономы: звездная динамика и эволюция галактик, крупномасштабная структура Вселенной, происхождение космических лучей, общая теория относительности и физическая космология, в частности космология струн и астрофизика элементарных частиц. Теория относительности важна для изучения крупномасштабных структур, для которых гравитация играет значительную роль в физических явлениях. Это основа исследований чёрных дыр и гравитационных волн. Некоторые широко принятые и изучены теории и модели в астрономии, теперь включённые в модель Лямбда-CDM, — Большой Взрыв, расширение космоса, темная материя и фундаментальные физические теории.
Астрономия — одна из наук, где вклад любителей может быть значительным[18]. Общий объём любительских наблюдений больше, чем профессиональных, хотя технические возможности любителей намного меньше. Иногда они самостоятельно строят себе оборудование (как и 2 века назад). Наконец большинство ученых вышли именно из этой среды. Главные объекты наблюдений астрономов-любителей — Луна, планеты, звезды, кометы, метеорные потоки и различные объекты глубокого неба, а именно: звездные скопления, галактики и туманности. Одна из ветвей любительской астрономии, любительская астрофотография, представляет собой фотографирование участков ночного неба. Многие любители специализируются по отдельным объектам, типам объектов или типам событий[19][20].
Большинство любителей работает в видимом спектре, но небольшая часть экспериментирует с другими длинами волн. Это включает использование инфракрасных фильтров на обычных телескопах, а также использование радиотелескопов. Пионер любительской радиоастрономии — Карл Янский, который начал наблюдать небо в радиодиапазоне в 1930-х годах. Некоторые астрономы-любители используют как домашние телескопы, так и радиотелескопы, которые изначально были построены для астрономических учреждений, но теперь доступны для любителей (как для крупных исследовательских институтов)[21][22].
Астрономы-любители и сейчас продолжают вносить вклад в эту науку. Это одна из немногих дисциплин, где их вклад может быть значительным. Довольно часто они наблюдают покрытия астероидами звёзд, и эти данные используются для уточнения орбит астероидов. Иногда любители находят кометы, а многие из них регулярно наблюдают переменные звёзды. А достижения в области цифровых технологий позволили любителям добиться впечатляющего прогресса в области астрофотографии[23][24][25].
С 2008 по 2017 годы астрономия не преподавалась в школах России в виде отдельного предмета[26]. Согласно опросам ВЦИОМ в 2007 году 29 % россиян считали, что не Земля вращается вокруг Солнца, а наоборот — Солнце вращается вокруг Земли, а в 2011 году уже 33 % россиян придерживались этой точки зрения[27].
Портал «Астрономия» | |
Астрономия в Викисловаре | |
Астрономия в Викиучебнике | |
Астрономия в Викитеке | |
Астрономия на Викискладе | |
Астрономия в Викиновостях |
Astronomy has traditionally been among the most fertile fields for serious amateurs [...]
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .