Метеори́т (греч. Μετεώρος — «поднятый в воздух») — тело космического происхождения, упавшее на поверхность крупного небесного объекта.
Большинство найденных метеоритов имеют массу от нескольких граммов до нескольких десятков тонн (крупнейший из найденных метеоритов — Гоба, масса которого, по подсчетам, составляла около 60 тонн[1]). Полагают, что в сутки на Землю падает 5—6 тонн метеоритов, или 2 тысячи тонн в год[2].
Космическое тело размером до нескольких метров, летящее по орбите и попадающее в атмосферу Земли, называется метеорным телом, или метеороидом. Более крупные тела называются астероидами.
Явления, порождаемые при прохождении метеорными телами через атмосферу Земли, носят названия метеоров или, в общем случае, метеоритным дождём; особо яркие метеоры называют болидами.
Твёрдое тело космического происхождения, упавшее на поверхность Земли, называется метеоритом.
На месте падения крупного метеорита может образоваться кратер (астроблема). Один из самых известных кратеров в мире — Аризонский. Предполагается, что наибольший метеоритный кратер на Земле — Кратер Земли Уилкса (диаметр около 500 км).
Другие названия метеоритов: аэролиты, сидеролиты, уранолиты, метеоролиты, бэтилиямы (baituloi), небесные, воздушные, атмосферные или метеорные камни и т. д.
Аналогичные падению метеорита явления на других планетах и небесных телах обычно называются просто столкновениями между небесными телами.
В статье «Метеорит и метеороид: новые полные определения»[3] в журнале «Meteoritics & Planetary Science» в январе 2010 года авторы приводят большое количество исторических определений термина метеорит и предлагают научному сообществу следующие обоснованные определения:
В конце XVIII века Парижская академия наук отказала метеоритам в космическом происхождении (и падении с неба). Этот эпизод истории на протяжении двух веков представляется как образец косности и недальновидности официальной науки, хотя в сущности таковым не является. Представители академии исследовали образец хондрита, упавшего во время грозы и потому считавшегося местным населением «грозовым камнем» (мифическим камнем, материализующимся из молнии в воздухе). Учёные провели минералогический и химический анализы метеорита, однако этого недостаточно для того, чтобы подтвердить его космическую природу, а соответствующие астрономические открытия были совершены несколько десятилетий спустя. Поэтому академики были вынуждены либо признать реальность «грозового камня» из крестьянских поверий, либо проигнорировать тот факт, что метеорит упал с неба, и признать его земным минералом. Они выбрали второй, логичный вариант[4].
Н. Г. Норденшёльд первым провёл химический анализ метеорита в 1821 году и установил единство земных и внеземных элементов[5].
В 1875 году метеорит упал в районе озера Чад (Центральная Африка) и достигал, по рассказам аборигенов, 10 метров в диаметре. После того как информация о нём достигла Королевского астрономического общества Великобритании, к нему была послана экспедиция (спустя 15 лет). По прибытии на место оказалось, что его уничтожили слоны, облюбовав его для того, чтобы точить бивни. Воронку уничтожили редкие, но обильные дожди.
Изучением метеоритов занимались российские академики В. И. Вернадский, А. Е. Ферсман, известные энтузиасты исследования метеоритов П. Л. Драверт, Л. А. Кулик, Е. Л. Кринов и многие другие.
В Российской академии наук сейчас есть специальный Комитет по метеоритам, который руководит сбором, изучением и хранением метеоритов. При комитете есть большая метеоритная коллекция.
В 2016 году сотрудники Института ядерной физики СО РАН создали рентгеновскую установку, с помощью которого можно исследовать внутреннюю структуру метеорита[6].
Кристаллы хибонита (en:hibonite) в метеоритах, образовавшиеся тогда, когда протопланетный диск только начал остывать, содержат гелий и неон[7].
Метеорное тело входит в атмосферу Земли на скорости от 11,2 до 72 км/с. Причём нижний предел — это скорость убегания от Земли, а верхний — скорость убегания из Солнечной системы (42 км/с), сложенная со скоростью орбитального движения Земли (30 км/с)[8]. На такой скорости начинается его разогрев и свечение. За счёт абляции (обгорания и сдувания набегающим потоком частиц вещества метеорного тела) масса тела, долетевшего до поверхности, может быть меньше, а в некоторых случаях значительно меньше его массы на входе в атмосферу. Например, небольшое тело, вошедшее в атмосферу Земли на скорости 25 км/с и более, сгорает почти без остатка[источник не указан 2205 дней]. При такой скорости вхождения в атмосферу из десятков и сотен тонн начальной массы до поверхности долетает всего несколько килограммов или даже граммов вещества[источник не указан 2205 дней]. Следы сгорания метеорного тела в атмосфере можно найти на протяжении почти всей траектории его падения.
Потеря горизонтальной составляющей скорости |
Если метеорное тело не сгорело в атмосфере, то по мере торможения оно теряет горизонтальную составляющую скорости. Это приводит к изменению траектории падения от часто почти горизонтальной в начале до практически вертикальной в конце. По мере торможения свечение метеорного тела падает, оно остывает (часто свидетельствуют, что метеорит при падении был тёплый, а не горячий).
Кроме того, может произойти разрушение метеорного тела на фрагменты, что приводит к выпадению метеоритного дождя. Разрушение некоторых тел носит катастрофический характер, сопровождаясь мощными взрывами, и нередко не остаётся макроскопических следов метеоритного вещества на земной поверхности, как это было в случае с Тунгусским болидом. Предполагается, что такие метеориты могут представлять собой остатки кометы.
При соприкосновении метеорита с земной поверхностью на больших скоростях (порядка 2000-4000 м/с) происходит выделение большого количества энергии, в результате метеорит и часть горных пород в месте удара испаряются, что сопровождается мощными взрывными процессами, формирующими крупный округлый кратер, намного превышающий размеры метеорита, а большой объём горных пород испытывает импактный метаморфизм. Хрестоматийным примером этому служит Аризонский кратер.
При небольших скоростях (порядка сотен м/с) столь значительного выделения энергии не наблюдается, диаметр образующегося ударного кратера сравним с размерами самого метеорита, и даже крупные метеориты могут хорошо сохраниться, как например метеорит Гоба[9].
Основными внешними признаками метеорита являются кора плавления, регмаглипты и магнитность. Кроме того, метеориты, как правило, имеют неправильную форму (хотя встречаются и округлые или конусообразные метеориты)[10].
Кора плавления образуется на метеорите при его движении через земную атмосферу, в результате которого он может нагреться до температуры около 1800°[11]. Она представляет собой подплавленный и вновь затвердевший тонкий слой вещества метеорита. Как правило, кора плавления имеет чёрный цвет и матовую поверхность; внутри же метеорит более светлого цвета[10].
Регмаглипты представляют собой характерные углубления на поверхности метеорита, напоминающие отпечатки пальцев на мягкой глине[12]. Они также возникают при движении метеорита сквозь земную атмосферу, как следствие абляционных процессов[13].
Метеориты обладают магнитными свойствами, причём не только железные, но и каменные. Объясняется это тем, что в большинстве каменных метеоритов имеются включения никелистого железа[14].
Метеориты по составу делятся на три группы:
Наиболее часто встречаются каменные метеориты (92,8 % падений). Они состоят в основном из силикатов: оливинов (Fe, Mg)2[SiO4] (от фаялита Fe2[SiO4] до форстерита Mg2[SiO4]) и пироксенов (Fe, Mg)2Si2O6 (от ферросилита Fe2Si2O6 до энстатита Mg2Si2O6).
Подавляющее большинство каменных метеоритов (92,3 % каменных, 85,7 % общего числа падений) — хондриты. Хондритами они называются, поскольку содержат хондры — сферические или эллиптические образования преимущественно силикатного состава. Большинство хондр имеет размер не более 1 мм в диаметре, но некоторые могут достигать и нескольких миллиметров. Хондры находятся в обломочной или мелкокристаллической матрице, причём нередко матрица отличается от хондр не столько по составу, сколько по кристаллическому строению. Состав хондритов практически полностью повторяет химический состав Солнца, за исключением лёгких газов, таких как водород и гелий. Поэтому считается, что хондриты образовались непосредственно из протопланетного облака, окружающего Солнце, путём конденсации вещества и аккреции пыли с промежуточным нагреванием.
Ахондриты составляют 7,3 % каменных метеоритов. Это обломки протопланетных (и планетных?) тел, прошедшие плавление и дифференциацию по составу (на металлы и силикаты).
Железные метеориты состоят из железо-никелевого сплава. Они составляют 5,7 % падений.
Железо-силикатные метеориты имеют промежуточный состав между каменными и железными метеоритами. Они сравнительно редки (1,5 % падений).
Ахондриты, железные и железо-силикатные метеориты относят к дифференцированным метеоритам. Они предположительно состоят из вещества, прошедшего дифференцировку в составе астероидов или других планетных тел. Раньше считалось, что все дифференцированные метеориты образовались в результате разрыва одного или нескольких крупных тел, например планеты Фаэтона. Однако анализ состава разных метеоритов показал, что с большей вероятностью они образовались из обломков многих крупных астероидов.
Ранее выделяли ещё тектиты, куски кремнистого стекла ударного происхождения. Но позже оказалось, что тектиты образуются при ударе метеорита о горную породу, богатую кремнеземом[16].
Поиск спор бактерий в каменных метеоритах начал Ч. Липман[17]
Углеродосодержащие (углистые) метеориты имеют одну важную особенность — наличие тонкой стекловидной коры, образовавшейся, по-видимому, под воздействием высоких температур. Эта кора является хорошим теплоизолятором, благодаря чему внутри углистых метеоритов сохраняются минералы, не выносящие сильного нагрева — например, гипс. Таким образом стало возможным при исследовании химической природы подобных метеоритов обнаружить в их составе вещества, которые в современных[18] земных условиях являются органическими соединениями, имеющими биогенную природу[19] :
Наличие подобных веществ не позволяет однозначно заявить о существовании жизни вне Земли, так как теоретически при соблюдении некоторых условий они могли быть синтезированы и абиогенно.
С другой стороны, если обнаруженные в метеоритах вещества и не являются продуктами жизни, то они могут быть продуктами преджизни — подобной той, какая существовала некогда на Земле.
При исследовании каменных метеоритов обнаруживаются так называемые «организованные элементы» — микроскопические (5-50 мкм) «одноклеточные» образования, часто имеющие явно выраженные двойные стенки, поры, шипы и т. д.[19]
На сегодняшний день не является неоспоримым фактом, что эти окаменелости принадлежат останкам каких-либо форм внеземной жизни. Но, с другой стороны, эти образования имеют такую высокую степень организации, которую принято связывать с жизнью[19].
Кроме того, такие формы не обнаружены на Земле.
Особенностью «организованных элементов» является также их многочисленность: на 1г. вещества углистого метеорита приходится примерно 1800 «организованных элементов».
Некоторые интересные метеориты:
Более полный список метеоритов находится в статье Список метеоритов (таблица).
Находка метеорита — довольно редкое явление. Лаборатория метеоритики сообщает: «Всего на территории РФ за 250 лет было найдено только 125 метеоритов»[25].
|month=
(справка))
Портал «Метеориты» | |
Метеориты в Викисловаре | |
Метеориты на Викискладе |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .