Координаты:
TRAPPIST-1 | |||
---|---|---|---|
Звезда | |||
![]() TRAPPIST-1 в представлении художника во время транзита двух из семи известных планет | |||
Наблюдательные данные (Эпоха J2000.0) |
|||
Тип | одиночная звезда | ||
Прямое восхождение | 23ч 06м 29,28с | ||
Склонение | -05° 02′ 28,5″ | ||
Расстояние | 39,5 ± 1,3 св. года (12,1 ± 0,4 пк)[1] | ||
Видимая звёздная величина (V) | 18,80[1] | ||
Созвездие | Водолей | ||
Астрометрия | |||
Собственное движение (μ) |
RA: 890 mas в год Dec: −420 mas в год |
||
Параллакс (π) | 82,6 ± 2,6 mas | ||
Абсолютная звёздная величина (V) | 18,4 ± 0,1 | ||
Характеристики | |||
Спектральный класс | M8,0 ± 0,5[1] | ||
Физические характеристики | |||
Масса | 0,0802 ± 0,0073[2] M☉ | ||
Радиус | 0,121 ± 0,003[3] R☉ | ||
Возраст | 7,6 ± 2,2 млрд[3] лет | ||
Температура | 2559 ± 50[2] K | ||
Светимость | 0,000524 ± 0,000034[2] L☉ | ||
Металличность | [Fe/H] = +0,04 ± 0,08 | ||
Вращение | 3,295 ± 0,003 суток[4] | ||
|
|||
Информация в базах данных | |||
SIMBAD | данные | ||
![]() |
TRAPPIST-1 (также 2MASS J23062928-0502285 или EPIC 246199087)[7] — одиночная звезда в созвездии Водолея. Находится на расстоянии 39,5 св. года от Солнца. В 2016 году была открыта планетная система, состоящая из трёх планет. 22 февраля 2017 года было объявлено об открытии ещё четырёх планет, из них 3 — находятся в зоне обитаемости[8][9][10].
Юпитер | TRAPPIST-1 |
---|---|
![]() |
![]() |
Является красным карликом спектрального класса M8 V[1]. Видимая звёздная величина TRAPPIST-1 mV = 18,80m, при этом в красном и инфракрасном свете она значительно ярче: в фильтре R её блеск равен 16,47m, в J — 11,35m, в K — 10,30m[5]. Радиус звезды составляет 12,1 % радиуса Солнца[3], что немногим больше радиуса Юпитера[2][11]. При этом её масса равна 0,080 ± 0,007 массы Солнца[2], или ~84 массам Юпитера[1]. Средняя плотность звезды, определённая по транзитам планет, в 49,3+4,1
−8,3 раза превосходит среднюю плотность Солнца[11]. Поверхностная температура оценивается в 2559 ± 50 К[1]. Её светимость примерно в 1900 раз меньше светимости Солнца[1]. До наблюдений телескопом «Кеплер» считалось, что период вращения составляет 1,40 ± 0,05 суток[11], однако новые данные указывают на 3,295 ± 0,003 суток[4]. Активность звезды оказалась умеренной, частота вспышек с мощностью выше 1 % от средней светимости в 30 раз меньше, чем у звёзд классов M6-M9. По этим, а также по ряду других данных был заново оценён возраст звезды; теперь считается, что он равен 7,6 ± 2,2 млрд. лет[3][6][12]. До этого было известно только то, что TRAPPIST-1 старше 500 миллионов лет[2].
Звезда обладает довольно высоким собственным движением, перемещаясь по небесной сфере на 1,04 угловой секунды в год[5]. Её лучевая скорость составляет −56,3 ± 0,3 км/с, звезда приближается к Солнцу[5].
В мае 2016 года группа астрономов из Бельгии и США, во главе с Микаэлем Жийоном (фр. Michaël Gillon), объявила[13] об открытии трёх транзитных планет в системе тусклого холодного красного карлика 2MASS J23062928-0502285 с помощью роботизированного 0,6-метрового телескопа TRAPPIST, расположенного в обсерватории ESO Ла-Силья в Чили[14]. Результаты исследования были опубликованы в журнале Nature[11]. Планеты получили обозначения TRAPPIST-1 b, TRAPPIST-1 c и TRAPPIST-1 d, в порядке удалённости от звезды. Однако при последующих наблюдениях было установлено, что первоначальное наблюдение третьей планеты, TRAPPIST-1 d, было ошибочным — её предполагавшийся транзит в действительности был совпадением прохождений по диску звезды других, на тот момент ещё неизвестных планет системы. Более тщательные наблюдения системы позволили обнаружить настоящую третью планету вместе с ещё четырьмя транзитными землеподобными планетами (e, f, g и h), параметры которых были представлены на пресс-конференции НАСА 22 февраля 2017 года[15] и одновременно опубликованы в журнале Nature[2]. Эти дополнительные наблюдения были выполнены с помощью нескольких наземных телескопов и космического телескопа «Спитцер», измерявшего блеск звезды в течение почти 20 суток в сентябре 2016 года. Таким образом, общее число планет в системе достигло семи, при этом период обращения TRAPPIST-1h не был точно измерен «Спитцером», так как планета наблюдалась всего 1 раз. Но телескоп «Кеплер» в рамках миссии K2 наблюдал за изменениями яркости TRAPPIST-1 в двенадцатой области с 15 декабря 2015 по 4 марта 2017, соответственно, смог засечь больше транзитов и определить точный период обращения седьмой планеты[6][12]. Месяц спустя, 13 апреля, используя эти же данные, были уточнены параметры всех планет в системе[16].
Семь открытых экзопланет системы TRAPPIST-1 близки по размеру к Земле[1] (их радиусы колеблются от 0,71 R⊕ у TRAPPIST-1 h до 1,13 R⊕ у TRAPPIST-1 g), а ориентировочная масса измерена с помощью тайминга транзитов. Периоды обращения вокруг родительской звезды для двух внутренних планет, b и c, соответственно составляют 1,51 и 2,42 суток. Предполагалось, что возможно, обе планеты являются горячими аналогами Венеры[1]. Однако после измерения масс и, соответственно, плотностей планет системы оказалось, что аналогом Венеры может являться вторая планета — TRAPPIST-1 c, а первая планета, TRAPPIST-1 b, с большей вероятностью содержит много воды или других летучих веществ в своём составе[17]. Период обращения третьей планеты первоначально определён не был, и было предположено, что он лежит в пределах от 4,6 до 72,8 суток. Но после публикации результатов анализа транзитов планет (сделанных телескопом «Спитцер»), было установлено, что первоначальное отождествление третьей планеты было ошибочным. Открытая в ходе новых наблюдений планета TRAPPIST-1 d обращается за 4,05 суток и имеет радиус 0,77 R⊕[2][18]. Кроме того, на основе этих данных были открыты новые экзопланеты: TRAPPIST-1 e с орбитальным периодом в 6,1 суток и радиусом 0,92 R⊕; TRAPPIST-1 f с орбитальным периодом в 9,2 суток и радиусом 1,04 R⊕; TRAPPIST-1 g с орбитальным периодом в 12,3 суток и радиусом 1,13 R⊕; а также седьмая по удалению планета — TRAPPIST-1 h. Из-за того, что «Спитцер» смог зафиксировать только один транзит планеты, её параметры вначале не были определены точно (орбитальный период был вычислен по продолжительности транзита и предполагался равным примерно 20 дням, а радиус — 0,75 R⊕)[2]. После обработки наблюдений телескопа «Кеплер» стало известно, что на самом деле TRAPPIST-1 h обращается за 18 суток и имеет радиус 0,7 земного[6]. Только месяцем позже стали известны её более точные параметры, а данные остальных планет системы были значительно уточнены. Оказалось, что массы в предыдущем исследовании оказались завышенными. Так, плотность шести планет указывает на наличие заметной доли воды и других летучих веществ в их составе. Четыре крайние планеты, а именно e, f, g и h, могут почти целиком состоять из воды. Только планета TRAPPIST-1 c имеет массу больше раннее предсказанной, и может содержать более 50 % железа в своём составе[16].
Также исходя из данных Кеплера, энтузиасты из проекта по любительскому поиску экзопланет «Planet Hunters» предположили также наличие ещё одной планеты в системе, с орбитальным периодом в 26,736 суток[19][20]. Однако это открытие пока не подтверждено в более надёжных источниках[12].
В следующей таблице показаны значения характеристик планет системы, определённые со статистической достоверностью в 1σ[16]:
Планета | Радиус (R⊕) |
Масса (M⊕) |
Средняя плотность (г/см³) |
Период обращения (суток) |
Большая полуось (а.е.) |
Эксцентриситет |
---|---|---|---|---|---|---|
TRAPPIST-1 b | 1,086 ± 0,035 | 0,79 ± 0,27 | 3,4 ± 1,2 | 1,5108739 ± 0,0000075 | 0,01111 | 0,019 ± 0,008 |
TRAPPIST-1 c | 1,056 ± 0,035 | 1,63 ± 0,63 | 7,63 ± 3,04 | 2,421818 ± 0,000015 | 0,01522 | 0,014 ± 0,005 |
TRAPPIST-1 d | 0,772 ± 0,030 | 0,33 ± 0,15 | 3,95 ± 1,86 | 4,04982 ± 0,00017 | 0,02145 | 0,003+0,004 −0,003 |
TRAPPIST-1 e | 0,918 ± 0,039 | 0,24+0,56 −0,24 | 1,71+4,0 −1,71 | 6,099570 ± 0,000091 | 0,02818 | 0,007 ± 0,003 |
TRAPPIST-1 f | 1,045 ± 0,038 | 0,36 ± 0,12 | 1,74 ± 0,61 | 9,20648 ± 0,00053 | 0,0371 | 0,011 ± 0,003 |
TRAPPIST-1 g | 1,127 ± 0,041 | 0,566 ± 0,038 | 2,18 ± 0,28 | 12,35281 ± 0,00044 | 0,0451 | 0,003 ± 0,002 |
TRAPPIST-1 h | 0,715 ± 0,047 | 0,086 ± 0,084 | 1,27 ± 1,27 | 18,76626 ± 0,00068 | 0,0596 | 0,086 ± 0,032 |
Орбитальные периоды всех известных планет системы кратны друг другу и находятся в резонансе. Это самая длинная цепочка резонансов среди экзопланет. Предполагается, что она возникла из-за взаимодействий, происходящих во время миграции планет из внешних регионов во внутренние после своего формирования в протопланетном диске. Если это так, то повышаются шансы обнаружить на этих планетах значительное количество воды[6][21].
TRAPPIST-1 b | TRAPPIST-1 c | TRAPPIST-1 d | TRAPPIST-1 e | TRAPPIST-1 f | TRAPPIST-1 g | TRAPPIST-1 h | |
---|---|---|---|---|---|---|---|
Общий резонанс |
24/24 | 24/15 | 24/9 | 24/6 | 24/4 | 24/3 | 24/2 |
Резонанс со следующей планетой |
8/5 (1,603) |
5/3 (1,672) |
3/2 (1,506) |
3/2 (1,509) |
4/3 (1,342) |
3/2 (1,519) |
? |
Из семи известных на сегодня планет системы три находятся в обитаемой зоне TRAPPIST-1: e, f и g. Согласно измеренной плотности, планета b может либо иметь небольшое ядро, либо, что вероятнее, содержать значительную долю воды или других летучих веществ в своём составе. Ввиду слишком высокой температуры поверхности первых двух планет (+127 и +69) поддержание воды в жидком виде на них крайне маловероятно. Планета f имеет достаточно низкую плотность и может являться планетой-океаном[2][17]. По моделям, предложенным в Университете Корнелла, предполагается, что зона обитаемости у TRAPPIST-1 может быть шире, если рассматривать вулканический водород как потенциальный парниковый газ, способствующий повышению климатической температуры. Это значит, что в зону обитаемости могут попадать не три, а четыре планеты[22][23]. Рентгеновское излучение короны TRAPPIST-1 примерно равно рентгеновскому излучению Проксимы Центавра, а ультрафиолетовое излучение (Серия Лаймана), создаваемое атомами водорода из хромосферного слоя звезды, расположенного под короной, у TRAPPIST-1 оказалось в 6 раз меньше ультрафиолетового излучения Проксимы Центавра[24]. По этой причине две самые близкие к звезде планеты, TRAPPIST-1 b и TRAPPIST-1 c, могли потерять свои атмосферу и гидросферу за время от 1 до 3 миллиардов лет, если их начальные массы похожи на земные. Однако пополнение атмосферного водорода и кислорода может происходить за счёт фотодиссоциации воды, если планеты содержат её много в своём составе.
TRAPPIST-1 b | TRAPPIST-1 c | TRAPPIST-1 d | TRAPPIST-1 e | TRAPPIST-1 f | TRAPPIST-1 g | TRAPPIST-1 h | |
---|---|---|---|---|---|---|---|
Инсоляция (I⊕) | 4,25 ± 0,33 | 2,27 ± 0,18 | 1,143 ± 0,088 | 0,662 ± 0,051 | 0,382 ± 0,030 | 0,258 ± 0,020 | 0,131+0,081 −0,067 |
Равновесная температура (K) |
400 | 342 | 288 | 251 | 219 | 199 | 167 |
Равновесная температура (°C) |
+127 | +69 | +15 | −22 | −54 | −74 | −106 |
Равновесная температура планет в таблице[16] приведена в предположении нулевого альбедо Бонда (то есть в отсутствие рассеяния падающего света атмосферой) и в отсутствие парникового эффекта атмосферы. Для сравнения, равновесная температура Земли на её орбите вокруг Солнца при тех же предположениях была бы равна 279 К, или +4 °C, Марса — 226 К, или −47 °C[25].
В ноябре 2017 года считалось, что активность звезды не позволяет её планетам удерживать и формировать атмосферу. Однако, в декабре того же года в одном из исследований было показано, что атмосфера может сохраниться и при такой агрессивной активности звезды, и для системы TRAPPIST-1 планеты g и h могут иметь атмосферу. Предполагается, что разрешить этот вопрос будет возможно посредством непосредственного наблюдения телескопом Джеймса Уэбба в 2019 году[26].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .