Законы Кеплера | |
![]() | |
Названо в честь | Иоганн Кеплер |
---|---|
![]() |
Зако́ны Ке́плера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел в случае пренебрежимо малой массы планеты, то есть предельным переходом , где , — массы планеты и звезды соответственно.
Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Форма эллипса и степень его сходства с окружностью характеризуется отношением , где — расстояние от центра эллипса до его фокуса (фокальное расстояние), — большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно, эллипс превращается в окружность.
Закон всемирного тяготения Ньютона гласит, что «каждый объект во Вселенной притягивает каждый другой объект по линии, соединяющей центры масс объектов, пропорционально массе каждого объекта, и обратно пропорционально квадрату расстояния между объектами». Это предполагает, что ускорение имеет форму
Вспомним, что в полярных координатах
В координатной форме запишем
Подставляя и во второе уравнение, получим
которое упрощается
После интегрирования запишем выражение
для некоторой константы , которая является удельным угловым моментом ( ).
Пусть
Уравнение движения в направлении становится равным
Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как
где — универсальная гравитационная константа и — масса звезды.
В результате
Это дифференциальное уравнение имеет общее решение:
для произвольных констант интегрирования и .
Заменяя на 1/ и полагая , получим:
Мы получили уравнение конического сечения с эксцентриситетом и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.
Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.
Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.
Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.
По определению угловой момент точечной частицы с массой и скоростью записывается в виде:
где — радиус-вектор частицы а — импульс частицы. Площадь, заметаемая радиус-вектором за время из геометрических соображений равна
где представляет собой угол между направлениями и .
По определению
В результате мы имеем
Продифференцируем обе части уравнения по времени
поскольку векторное произведение параллельных векторов равно нулю. Заметим, что всегда параллелен , поскольку сила радиальная, и всегда параллелен по определению. Так как производная от константы равна нулю, , а следовательно и пропорциональная ей скорость заметания площади — константы.
Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.
где и — периоды обращения двух планет вокруг Солнца, а и — длины больших полуосей их орбит. Утверждение справедливо также для спутников.
Ньютон установил, что гравитационное притяжение планеты определённой массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:
где — масса Солнца, а и — массы планет.
Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
Второй закон Кеплера утверждает, что радиус-вектор обращающегося тела заметает равные площади за равные промежутки времени. Если теперь мы возьмём очень малые промежутки времени в момент, когда планета находится в точках (перигелий) и (афелий), то мы сможем аппроксимировать площадь треугольниками с высотами, равными расстоянию от планеты до Солнца, и основанием, равным произведению скорости планеты на время.
Используя закон сохранения энергии для полной энергии планеты в точках и , запишем
Теперь, когда нашли , мы можем найти секториальную скорость. Так как она постоянна, то можем выбрать любую точку эллипса: например, для точки B получим
Однако полная площадь эллипса равна (что равно , поскольку ). Время полного оборота, таким образом, равно
Заметим, что если масса не пренебрежимо мала по сравнению с , то планета будет обращаться вокруг Солнца с той же скоростью и по той же орбите, что и материальная точка, обращающаяся вокруг массы (см. приведённая масса). При этом массу в последней формуле нужно заменить на :
Рассмотрим планету как точку массой m, вращающейся по эллиптической орбите, в двух положениях:
Запишем закон сохранения момента импульса
где M - масса Солнца.
Решая систему, нетрудно получить соотношение на скорость планеты в точке "перигелий":
Выразим секторную скорость (которая по второму закону Кеплера является постоянной величиной):
Вычислим площадь эллипса, по которому движется планета. С одной стороны:
где - длина большой полуоси, - длина малой полуоси орбиты.
С другой стороны, воспользовавшись тем, что для вычисления площади сектора можно перемножить секторную скорость на период оборота:
Следовательно,
Для дальнейших преобразований воспользуемся геометрическими свойствами эллипса. Имеем соотношения
Подставим в формулу площади эллипса:
Откуда окончательно получим:
или в традиционном виде
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .